Category Archives: Metaphysics

Structured propositions and truth conditions.

In the previous post, I talked about the view of structured propositions as lists, or n-tuples, and the Benacerraf objections against it. So now I’m moving on to a different sort of worry. Here’s King expressing it:

“A final difficulty for the view that propositions are ordered n-tuples concerns the mystery of how or why on that view they have truth conditions. On any definition of ordered n-tuples we are considering, they are just sets. Presumably, many sets have no truth conditions (eg. The set of natural numbers). But then why do certain sets, certain ordered n-tuples, have truth-conditions? Since not all sets have them, there should be some explanation of why certain sets do have them. It is very hard to see what this explanation could be.”

I feel the force of something in this vicinity, but I’m not sure how to capture the worry. In particular, I’m not sure whether the it’s right to think of structured propositions’ having truth-conditions as a particularly “deep” fact over which there is mystery in the way King suggests. To get what I’m after here, it’s probably best simply to lay out a putative account of the truth-conditions of structured propositions, and just to think about how we’d formulate the explanatory challenge.

Suppose, for example, one put forward the following sort of theory:

(i) The structured proposition that Dummett is a philosopher = [Dummett, being a philosopher].
(ii) [Dummett, being a philosopher] stands in the T relation to w, iff Dummett is a philosopher according to w.
(iii) bearing the T-relation to w=being true at w

Generalizing,

(i) For all a, F, the structured proposition that a is F = [a, F]
(ii) For all individuals a, and properties F, [a, F] stands in the T relation to w iff a instantiates F according to w.
(iii) bearing the T-relation to w=being true at w

In a full generality, I guess we’d semantically ascend for an analogue of (i), and give a systematic account of what structured propositions are associated with which English sentences (presumably a contingent matter). For (ii), we’d give a specification (which there’s no reason to make relative to any contingent facts) about which ordered n-tuples stand in the T-relation to which worlds. (iii) can stay as it is.

The naïve theorist may then claim that (ii) and (iii) amount to a reductive account of what it is for a structured proposition to have truth-conditions. Why does [1,2] not have any truth-conditions, but [Dummett, being a philosopher] does? Because the story about what it is for an ordered pair to stand in the T-relation to a given world, just doesn’t return an answer where the second component isn’t a property. This seems like a totally cheap and nasty response, I’ll admit. But what’s wrong with it? If that’s what truth-conditions for structured propositions are, then what’s left to explain? It doesn’t seem that there is any mystery over (ii): this can be treated as a reductive definition of the new term “bearing the T-relation”. Are there somehow explanatory challenges facing someone who endorses the property-identity (iii)? Quite generally, I don’t see how identities could be the sort of thing that need explaining.

(Of course, you might semantically ascend and get a decent explanatory challenge: why should “having truth conditions” refer to the T-relation. But I don’t really see any in principle problem with addressing this sort of challenge in the usual ways: just by pointing to the fact that the T-relation is a reasonably natural candidate satisfying platitudes associated with truth-condition talk.)

I’m not being willfully obstructive here: I’m genuinely interested in what the dialectic should be at this point. I’ve got a few ideas about things one might say to bring out what’s wrong with the flat-footed response to King’s challenge. But none of them persuades me.

Some options:

(a)Earlier, we ended up claiming that it was indefinite what sets structured propositions were identical with. But now, we’ve given a definition of truth-conditions that is committal on this front. For example, [F,a] was supposed to be a candidate precisification of the proposition that a is F. But (ii) won’t assign it truth conditions, since the second component isn’t a property but an individual.

Reply: just as it was indefinite what the structured propositions were, it is indefinite what sets have truth-conditions, and what specification of those truth-conditions is. The two kinds of indefiniteness are “penumbrally connected”. On a precisification on which the prop that a is F=[a,F], then the clause holds as above; but on a precisification on which that a is F=[F,a], a slightly twisted version of the clause will hold. But no matter how we precisify structured proposition-talk, there will be a clause defining the truth-conditions for the entities that we end up identifying with structured propositions.

(b) You can’t just offer definitional clauses or “what it is” claims and think you’ve evaded all explanatory duties! What would we think of a philosopher of mind who put forward a reductive account whereby pain-qualia were by definition just some characteristics of C-fibre firing, and then smugly claimed to have no explanatory obligations left.

Reply: one presupposition of the above is that clauses like (ii) “do the job” of truth-conditions for structured propositions, i.e. there won’t be a structured proposition (by the lights of (i)) whose assigned “truth-conditions” (by the lights of (ii)) go wrong. So whatever else happens, the T-relation (defined via (ii)) and the truth-at relation we’re interested in have a sort of constant covariation (and, unlike the attempt to use a clause like (ii) to define truth-conditions for sentences, we won’t get into trouble when we vary the language use and the like across worlds, so the constant covariation is modally robust). The equivalent assumption in the mind case is that pain qualia and the candidate aspect of C-fibre firing are necessarily constantly correlated. Under those circumstances, many would think we would be entitled to identify pain qualia and the physicalistic underpinning. Another way of putting this: worries about the putative “explanatory gap” between pain-qualia and physical states are often argued to manifest themselves in a merely contingent correlation between the former and the latter. And that’d mean that any attempt to claim that pain qualia just are thus-and-such physical state would be objectionable on the grounds that pain qualia and the physical state come apart in other possible worlds.
In the case of the truth-conditions of structured propositions, nothing like this seems in the offing. So I don’t see a parody of the methodology recommended here. Maybe there is some residual objection lurking: but if so, I want to hear it spelled out.

(c)Truth-conditions aren’t the sort of thing that you can just define up as you please for the special case of structured propositions. Representational properties are the sort of things possessed by structural propositions, token sentences (spoken or written) of natural language, tokens of mentalese, pictures and the rest. If truth-conditions were just the T-relation defined by clause (ii), then sentences of mentalese and English, pictures etc couldn’t have truth-conditions. Reductio.

Reply: it’s not clear at all that sentences and pictures “have truth-conditions” in the same sense as do structured propositions. It fits very naturally with the structured-proposition picture to think of sentences standing in some “denotation” relation to a structured proposition, through which may be said to derivatively have truth-conditions. What we mean when we say that ‘S has truth conditions C’ is that S denotes some structured proposition p and p has truth-conditions C, in the sense defined above. For linguistic representation, at least, it’s fairly plausible that structured propositions can act as a one-stop-shop for truth-conditions.

Pictures are a trickier case. Presumably they can represent situations accurately or non-accurately, and so it might be worth theorizing about them by associating them with a coarse-grained proposition (the set of worlds in which they represent accurately). But presumably, in a painting that represents Napolean’s defeat at waterloo, there doesn’t need to be separable elements corresponding to Napolean, Waterloo, and being defeated at, which’d make for a neat association of the picture with a structured proposition, in the way that sentences are neatly associated with such things. Absent some kind of denotation relation between pictures and structured propositions, it’s not so clear whether we can derivatively define truth-conditions for pictures as the compound of the denotation relation and the truth-condition relation for structured propositions.

None of this does anything to suggest that we can’t give an ok story about pairing pictures with (e.g.) coarse-grained propositions. It’s just that the relation between structured propositions and coarse-grained propositions (=truth conditions) and the relation between pictures and coarse-grained propositions can’t be the same one, on this account, and nor is even obvious how the two are related (unlike e.g. the sentence/structured proposition case).
So one thing that may cause trouble for the view I’m sketching is if we have both the following: (A) there is a unified representation relation, such that pictures/sentences/structured propositions stand in same (or at least, intimately related) representation relations to C. (B) there’s no story about pictorial (and other) representations that routes via structured propositions, and so no hope of a unified account of representation given (ii)+(iii).

The problem here is that I don’t feel terribly uncomfortable denying (A) and (B). But I can imagine debate on this point, so at least here I see some hope of making progress.

Having said all this in defence of (ii), I think there are other ways for the naïve, simple set-theoretic account of structured propositions to defend itself that don’t look quite so flat-footed. But the ways I’m thinking of depend on some rather more controversial metasemantic theses, so I’ll split that off into a separate post. It’d be nice to find out what’s wrong with this, the most basic and flat-footed response I can think of.

Structured propositions and Benacerraf

I’ve recently been reading Jeff King’s book on structured propositions. It’s really good, as you would expect. There’s one thing that’s bothering me though: I can’t quite get my head around what’s wrong with the simplest, most naïve account of the nature of propositions. (Disclaimer: this might all turn out to be very simple-minded to those in the know. I’d be happy to get pointers to the literature (hey, maybe it’ll be to bits of Jeff’s book I haven’t got to yet…)

The first thing you encounter when people start talking about structured propositions is notation like [Dummett, being a philosopher]. This is supposed to stand for the proposition that Dummett is a philosopher, and highlights the fact that (on the Russellian view) Dummett and the property of being a philosopher are components of the proposition. The big question is supposed to be: what do the brackets and comma represent? What sort of compound object is the proposition? In what sense does it have Dummett and being a philosopher as components? (If you prefer a structured intension view, so be it: then you’ll have a similar beast with the individual concept of Dummett and the worlds-intension associated with “is a philosopher” as ‘constituents’. I’ll stick with the Russellian view for illustrative purposes.)

For purposes of modelling propositions, people often interpret the commas as brackets as the ordered n-tuples of standard set theory. The simplest, most naïve interpretation of what structured propositions are, is simply to identify them as n-tuples. What’s the structured proposition itself? It’s a certain kind of set. What sense are Dummett and the property of being a philosopher constituents of the structured proposition that Dummett is a philosopher? They’re elements of the transitive closure of the relevant set.

So all that is nice and familiar. So what’s the problem? In his ch 1. (and, in passing, in the SEP article here) King mentions two concerns. In this post, I’ll just set the scene by talking about the first. It’s a version of a famous Benacerraf worry, which anyone with some familiarity with the philosophy of maths will have come across (King explicitly makes the comparison). The original Benacerraf puzzle is something like this: suppose that the only abstract things are set like, and whatever else they may be, the referents of arithmetical terms should be abstract. Then numerals will stand for some set or other. But there are all sorts of things that behave like the natural numbers within set theory: the constructions known as the (finite) Zermelo ordinals (null, {null}, {{null}}, {{{null}}}…) and the (finite) von Neumann ordinals (null, {null}, {null,{null}}…) are just two. So there’s no non-arbitrary theory of which sets the natural numbers are.

The phenomenon crops up all over the place. Think of ordered n-tuples themselves. Famously, within an ontology of unordered sets, you can define up things that behave like ordered pairs: either [a,b]={{a},{a,b}} or {{{a},null},{{b}}}. (For details see http://en.wikipedia.org/wiki/Ordered_pair). It appears there’s no non-arbitrary reason to prefer a theory that ‘reduces’ ordered to unordered pairs one way or the other.

Likewise, says King, there looks to be no non-arbitrary choice of set-theoretic representation of structured propositions (not even if we spot ourselves ordered sets as primitive to avoid the familiar ordered-pair worries). Sure, we *could* associate the words “the proposition that Dummett is a philosopher” with the ordered pair [Dummett, being a philosopher]. But we could also associate it with the set [being a philosopher, Dummett] (and choices multiply when we get to more complex structured propositions).

One reaction to the Benacerrafian challenge is to take it to be a decisive objection to an ontological story about numbers, ordered pairs or whatever that allows only unordered sets as a basic mathematical ontology. My own feeling is (and this is not uncommon, I think) that this would be an overreaction. More strongly: no argument that I’ve seen from the Benacerraf phenomenon to this ontological conclusion seems to me to be terribly persuasive.

What we should admit, rather, is that if natural numbers or ordered pairs are sets, it’ll be indefinite which sets they are. So, for example, [a,b]={{a},{a,b}} will be neither definitely true nor definitely false (unless we simply stipulatively define the [,] notation one way or another rather than treating it as pre-theoretically understood). Indefiniteness is pervasive in natural language—everyone needs a story about how it works. And the idea is that whatever that story should be, it should be applied here. Maybe some theories of indefiniteness will make these sort of identifications problematic. But prominent theories like Supervaluationism and Epistemicism have neat and apparently smooth theories of what it we’re saying when we call that identity indefinite: for the supervaluationist, it (may) mean that “[a,b]” refers to {{a},{a,b}} on one but not all precisifications of our set-theoretic language. For the epistemicist, it means that (for certain specific principled reasons) we can’t know that the identity claim is false. The epistemicist will also maintains there’s a fact of the matter about which identity statement connecting ordered and unordered sets is true. And there’ll be some residual arbitrariness here (though we’ll probably have to semantically ascend to find it)—but if there is arbitriness, it’s the sort of thing we’re independently committed to to deal with the indefiniteness rife throughout our language. If you’re a supervaluationist, then you won’t admit there’s any arbitriness: (standardly) the identity statement is neither true nor false, so our theory won’t be committed to “making the choice”.

If that’s the right way to respond to the general Benacerraf challenge, it’s the obvious thing to say in response to the version of that puzzle that arises for the Benacerraf case. And this sort of generalization of the indefiniteness maneuver to philosophical analysis is pretty familiar, it’s part of the standard machinery of the Lewisian hoardes. Very roughly, the programme goes: figure out what you want the Fs to do, Ramsify away terms for Fs and you get a way to fix where the Fs are amidst the things you believe in: they are whatever satisfy the open sentence that you’re left with. Where there are multiple, equally good satisfiers, then deploy the indefiniteness maneuver.

I’m not so worried on this front, for what I take to be pretty routine reasons. But there’s a second challenge King raises for the simple, naïve theory of structured propositions, which I think is trickier. More on this anon.

Two problems of the many.

Here’s a paradigmatic problem of the many (Geach and Unger are the usual sources cited, but I’m not claiming this to be exactly the version they use.) Let’s take a moulting cat. There are many hairs that are neither clearly attached, nor clearly unattached to the main body of the cat. Let’s enumerate them 1—1000. Then we might consider the material objects which are the masses of cat-arranged matter that include half of the thousand hairs, and exclude to the other half. There are many ways to choose the half that’s included. So by this recipe we get many many distinct masses of cat-arranged matter, differing only over hairs. The various pieces of cat-arranged matter change their properties over time in very much the way that cats do: they are now in a sitting-shape, now in a standing-shape, now in a lapping-milk shape, now in an emitting-meows configuration. They each seem to have everything intrinsically required for being a cat.

If you’re inclined to think (and I am) that a cat is a material object identical to some piece of cat-arranged matter, then the problem of the many arises: which of the various distinct pieces of cat-arranged matters is the cat? Various answers have been suggested. Some of the most obvious (though not necessarily the most sensible) are: (i) nihilism: none of the cat-candidates are cats. (ii) brutalism: exactly one is a cat, and there is a brute fact of the matter which it is; (iii) vague cat: exactly one is a cat, and it’s a vague matter which it is; (iii) manyism: lots of the cat-candidates are cats.

(By the way, (ii) and (iii) may not be incompatible, if you’re an epistemicist about vagueness. And those who are fans of many-valued logics for vagueness should have a think about whether they can really support (iii). Consider the best candidates to be a cat, c1….c1000. Suppose these are each cats to an equal degree. Then “one of c1…c1000 is a cat” will standardly have a degree of truth equal to the disjunction=the maximum of the disjuncts=the degree of truth of “c1 is a cat”. And the degree of truth of the conjunction: “all of c1…c1000 is a cat” will standardly have a degree of truth equal to the conjunction=the minimum of the conjuncts=the degree of truth of “c1 is a cat”. So to the extent that the (determinately distinct) best candidates aren’t all cats, to exactly that extent there’s no cat among them (and since we chose the best candidates, we won’t get a higher degree of truth for “the cat is present” by including extra disjuncts. Conclusion: if you’re tempted by response (iii) to the problem of the many, you’ve got strong reason not to go for many-valued logic. [Edit (see comments): this needs qualification. I think you’ve reason not to go for many-valued logics that endorse the (fairly standard, but not undeniable) max/min treatment of disjunction/conjunction; and in which the many values are linearly arranged].)

What I’d really like to emphasize is the above leaves open the following question: Is there a super-cat-candidate, i.e. a piece of cat-arranged matter of which every other cat-candidate is a proper part? Take the Tibbles case above, and suppose that the candidates only differ over hairs. Then a potential super-cat-candidate would be the piece of matter that’s maximally generous: that includes all the 1000 not-clearly-unattached hairs. If this particular fusion isn’t genuinely a cat-candidate, then it’s open that if you arrange the cat-candidates by which is a part of which, you’ll end up with multiple maximal cat-candidates none of which is a part of the other. Perhaps they each contain 999 hairs, but differ amongst themselves which hair they don’t include.

If there is a super-cat-candidate, let’s say the problem of the many is of type-1, and if there’s no super-cat-candidate, let’s say that the problem of the many is of type-2.

My guess is that our description of cases like Tibbles leaves is simply underspecified as to whether it’s of type-1 or type-2. But I certainly don’t see any principled reason to think that the actual cases of the POM we find around us are always of type-1. There’s certainly no a priori guarantee that the sort of criterion that rules in some things as parts of a cat won’t also dismiss other things as non-parts. So for example, perhaps we can rank candidates for degrees of integration: some unintegrated parts are ok, but there’s some cut-off where an object is just too unintegrated to count as a candidate. One cat-candidate includes some borderline-attached skin cells, and is to that extent unintegrated. Another cat-candidate includes some borderline-attached teeth, and is to that extent unintegrated. But plausibly the fusion that includes both skin cells and teeth is less integrated: enough to disqualify it from being a cat-candidate. It’s hard to know how to argue the case further without going deeply into feline biology, but I hope you get the sense of why type-2 POM need to be dealt with.

Now, one response to the standard POM is to appeal to the “maximality” allegedly built into various predicates (like “rock”, “cat”, “conscious” etc): things that are duplicates of rocks, but which are surrounded by extra rocky stuff, become merely parts of rocks (and so forth). There are presumably intrinisic duplicates of rocks embedded as tiny parts at the centre of large boulders: but there’s no intuitive pressure to count them as rocks. Likewise a cat might survive after it’s limbs are destroyed by a vengeful deity, but it’s unintuitive to think of the duplicate head-and-torso part of Tibbles as itself a cat-candidate. So there’s some reasons independently of paradigmatic problem of the many scenarios to think of “cat” and “rock” etc as maximal. (For more discussion of maximality, see Ted Sider’s various papers on the topic).

If we’ve got a type-1 problem of the many, then one might think that the maximality of “cat” or “rock” or whatever gives a principled answer to our original question: the super-cat-candidate (/super-rock-candidate) is the one uniquely qualified to be the cat (/rock). For we’ve then got an explanation for why all the others, though intrinsically qualified just like cats, aren’t cats: being a cat is a maximal property, and all the rival cat-candidates are parts of the one true cat in the vicinity.

But the type-2 problem of the many really isn’t addressed by maximality as such. There’s no unique super-cat-candidate in this setup, rather a range of co-maximal ones. So maximality won’t save our bacon here.

The difference between the two cases is important when we consider other things. For example, in the light of the (fairly widely accepted) maximality of “house” and “cat” and “rock” and the like, few would say that any duplicate of a house must be a house (even setting aside extrinsicality due to social setting). But there’s an obvious fall back position, which is floating around the literature: that any duplicate of a house must be a (proper or improper) part of a house (holding fixed social setting etc). That is, any house possesses the property of being part of a house intrinsically (so long as we hold fixed social setting etc). And the same goes for cat: at least holding fixed biological origin, it’s plausible that any cat is intrinsically at least part of a cat, and any rock is intrinsically at least part of a rock.

These claims aren’t threatened by maximality. But appealing to them in a type-2 problem of the many gets us an argument directly for response (iv): manyism. For plausibly if you took a duplicate of one of the co-maximal cat candidates, T, while eliminating from the scene those bits of matter that are not part of T but are part of one of the other co-maximal cat candidates, then you get something T* that’s (determinately) a cat. And so, any duplicate of T* must be at least part of a cat. And since T is a duplicate of T*, T must be at least part of a cat. But T isn’t proper part of anything that’s even a cat-candidate. So T must itself be a cat.

So the type-2 POM is harder to resolve than the type-1 kind. Maybe some extra weakening of the properties a cat-candidate has intrinsicality are called for. Or maybe (very surprisingly) type-2 POMs never arise. But either way, more work is needed.

Nihilism, maximality, problem of the many

Does nihilism about ordinary things help us out with puzzles surrounding maximal properties and the problem of the many? It’s hard to see how.

First, maximal properties. Suppose that I have a rock. Surprisingly, there seem to be microphysical duplicates of the rock that are not themselves rocks. For suppose we have a microphysical duplicate of the rock (call it Rocky) that is surrounded by extra rocky stuff. Then, plausibly, the fusion of Rocky and the extra rocky stuff is the rock, and Rocky himself isn’t, being out-competed for rock-status by his more extensive rival. Not being shared among duplicates, being a rock isn’t intrinsic. And cases meeting this recipe can be plausibly constructed for chairs, tables, rivers, nations, human bodies, human animals and (perhaps) even human persons. Most kind-terms, in fact, look maximal and (hence) extrinsic. Sider has argued that non-sortal properties such as consciousness are likewise maximal and extrinsic.

Second, the problem of the many. In its strongest version, suppose that we have a plentitude of candidates (sums of atoms, say) more or less equally qualified to be a table, cloud, human body or whatever. Suppose further that both the sum and intersection of all these candidates isn’t itself a candidate for being the object. (This is often left out of the description of the case, but (1) there seems no reason to think that the set of candidates will always be closed under summing or intersection (2) life is more difficult–and more interesting–if these candidates aren’t around.) Which of these candidates is the table, cloud, human body or whatnot?

What puzzles me is why nihilism—rejecting the existence of tables, clouds, human bodies or whatever—should be thought to avoid any puzzles around here. It’s true that the nihilist rejects a premise in terms of which these puzzles would normally be stated. So you might imagine that the puzzles give you reason to modus tollens and reject that premise, ending up with nihilism (that’s how Unger’s original presentation of the POM went, if I recall). But that’s no good if we can state equally compelling puzzles in the nihilist’s preferred vocabulary.

Take our maximality scenario. Nihilists allow that we have, not a rock, but some things arranged rockwise. And we now conceive of a situation where those things, arranged just as they actually are, still exist (let “Rocky” be a plural term that picks them out). But in this situation, they are surrounded by more things of a qualitatively similar arrangement. Now are the things in Rocky arranged rockwise? Don’t consult intuitions at this point—“rockwise” is a term of art. The theoretical role of “rockwise” is to explain how ordinary talk is ok. If some things are in fact arranged rockwise, then ordinary talk should count them as forming a rock. So, for example, van Inwagen’s paraphrase of “that’s is a rock” would be “those things are arranged rockwise”. If we point to Rocky and say “that’s a rock”, intuitively we speak falsely (that underpins the original puzzle). But if the things that are Rocky are in fact arranged rockwise, then this would be paraphrased to something true. What we get is that “are arranged rockwise” expresses a maximal, extrinsic plural property. For a contrast case, consider “is a circle”. What replaces this by nihilist lights are plural predicates like “being arranged circularly”. But this seems to express a non-maximal, intrinsic plural property. I can’t see any very philosophically significant difference between the puzzle as transcribed into the nihilists favoured setting and the original.

Similarly, consider a bunch of (what we hitherto thought were) cloud-candidates. The nihilist says that none of these exist. Still, there are things which are arranged candidate-cloudwise. Call them the As. And there are other things—differing from the first lot—which are also arranged candidate-cloudwise. Call them the Bs. Are the A’s or the B’s arranged cloudwise? Are there some other objects, including many but not all of the As and the B’s that *are* arranged cloudwise? Again, the puzzle translates straight through: originally we had to talk about the relation between the many cloud-candidates and the single cloud; now we talk about the many pluralities which are arranged candidate-cloudwise, and how they relate to the plurality that is cloudwise arranged. The puzzle is harder to write down. But so far as I can see, it’s still there.

Pursuing the idea for a bit, suppose we decided to say that there were many distinct pluralities that are arranged cloudwise. Then “there at least two distinct clouds” would be paraphrased to a truth (that there are some xx and some yy, such that not all the xx are among the yy and vice versa, such that the xx are arranged cloudwise and the yy are arranged cloudwise). But of course it’s the unassertibility of this sort of sentence (staring at what looks to be a single fluffy body in the sky) that leads many to reject Lewis’s “many but almost one” response to the problem of the many.

I don’t think that nihilism leaves everything dialectically unchanged. It’s not so clear how many of the solutions people propose to the problem of the many can be translated into the nihilist’s setting. And more positively, some options may seem more attractive once one is a nihilist than they did taken cold. Example: once you’re going in for a mismatch between common sense ontology and what there really is, then maybe you’re more prepared for the sort of linguistic-trick reconstructions of common sense that Lewis suggests in support of his “many but almost one”. Going back to the case we considered above, let’s suppose you think that there are many extensionally distinct pluralities that are all arranged cloudwise. Then perhaps “there are two distinct clouds” should be paraphrased, not as suggested above, but as:

there are some xx and some yy, such that almost all the xx are among the yy and vice versa, such that the xx are arranged cloudwise and the yy are arranged cloudwise.

The thought here is that, given one is already buying into unobvious paraphrase to capture the real content of what’s said, maybe the costs of putting in a few extra tweaks into that paraphrase are minimal.

Caveats: notice that this isn’t to say that nihilism solves your problems, it’s to say that nihilism may make it easier to accept a response that was already on the table (Lewis’s “many but almost one” idea). And even this is sensitive to the details of how nihilism want to relate ordinary thought and talk to metaphysics: van Inwagen’s paraphrase strategy is one such proposal, and meshes quite neatly with the Lewis idea, but it’s not clear that alternatives (such as Dorr’s counterfactual version) have the same benefits. So it’s not the metaphysical component of nihilism that’s doing the work in helping accommodate the problem of the many: it’s whatever machinery the nihilist uses to justify ordinary thought and talk.

There’s one style of nihilist who might stand their ground. Call nihilists friendly if they attempt to say what’s good about ordinary thought and talk (making use of things like “rockwise”, or counterfactual paraphrases, or whatever). I’m suggesting that friendly nihilists face transcribed versions of the puzzles that everyone faces. Nihilists might though be unfriendly: prepared to say that ordinary thought and talk is largely false, but not to reconstruct some subsidiary norm which ordinary thought and talk meets. Friendly nihilism is an interesting position, I think. Unfriendly nihilism is pushing the nuclear button on all attempts to sort out paradoxes statable in ordinary language. But they have at least this virtue: the puzzles they react against don’t come back to bite them.

[Update: I’ve been sent a couple of good references for discussions of nihilism in a similar spirit. First Matt McGrath’s paper “No objects, no problem?” argues that the nihilist doesn’t escape statue/lump puzzles. Second, Karen Bennett has a forthcoming paper called “Composition, Colocation, and Metaontology” that resurrects problems for nihilists including the problem of the many (though it doesn’t now appear to be available online).]

Emergence, Supervenience, and Indeterminacy

While Ross Cameron, Elizabeth Barnes and I were up in St Andrews a while back, Jonathan Schaffer presented one of his papers arguing for Monism: the view that the whole is prior to the parts, and the world is the one “fundamental” object.

An interesting argument along the way argued that contemporary physics supports the priority of the whole, at least to the extent that properties of some systems can’t be reduced to properties of their parts. People certainly speak that way sometimes. Here, for example, is Tim Maudlin (quoted by Schaffer):

The physical state of a complex whole cannot always be reduced to those of its parts, or to those of its parts together with their spatiotemporal relations… The result of the most intensive scientific investigations in history is a theory that contains an ineliminable holism. (1998: 56)

The sort of case that supports this is when, for example, a quantum system featuring two particles determinately has zero total spin. The issues is that there also exist systems that duplicate the intrinsic properties of the parts of this system, but which do not have the zero-total spin property. So the zero-total-spin property doesn’t appear to be fixed by the properties of its parts.

Thinking this through, it seemed to me that one can systematically construct such cases for “emergent” properties if one is a believer in ontic indeterminacy of whatever form (and thinks of it that way that Elizabeth and I would urge you to). For example, suppose you have two balls, both indeterminate between red and green. Compatibly with this, it could be determinate that the fusion of the two be uniform; and it could be determinate that the fusion of the two be variegrated. The distributional colour of the whole doesn’t appear to be fixed by the colour-properties of the parts.

I also wasn’t sure I believed in the argument, so posed. It seems to me that one can easily reductively define “uniform colour” in terms of properties of its parts. To have uniform colour, there must be some colour that each of the parts has that colour. (Notice that here, no irreducible colour-predications of the whole are involved). And surely properties you can reductively define in terms of F, G, H are paradigmatically not emergent with respect to F, G and H.

What seems to be going on, is not a failure for properties of the whole to supervene on the total distribution of properties among its parts; but rather a failure of the total distribution of properties among the parts to supervene on the simple atomic facts concerning its parts.

That’s really interesting, but I don’t think it supports emergence, since I don’t see why someone who wants to believe that only simples instantiate fundamental properties should be debarred from appealing to distributions of those properties: for example, that they are not both red, and not both green (this fact will suffice to rule out the whole being uniformly coloured). Minimally, if there’s a case for emergence here, I’d like to see it spelled out.

If that’s right though, then application of supervenience tests for emergence have to be handled with great care when we’ve got things like metaphysical indeterminacy flying around. And it’s just not clear anymore whether the appeal in the quantum case with which we started is legitimate or not.

Anyway, I’ve written up some of the thoughts on this in a little paper.

Fundamental and derivative truths

I’ve posted a new version of my paper “Fundamental and derivative truths“. The new version notes a few more uses for the fundamental/derivative distinction, and clears up a few points.

As before, the paper is concerned with a way of understanding the—initially pretty hard to take—claim that tables exist, but don’t really exist. I think that that claim at least makes good sense, and arguably the distinction between what is really/fundamentally the case and what is merely the case is something we should believe in whether or not we endorse the particular claim about tables. I think in particular that it leads to a particularly attractive view on the nature of set theory, since it really does seem that we do want to be able to “postulate sets into existence” (y’know how things form sets? well consider the set of absolutely everything. On pain of contradiction that set can’t be something that existed beforehand…) The framework I like lets us make sober sense of that.

The current version tidies up a bunch of things, it pinpoints more explicitly the difference between comparatively “easy cases”—defending the compatibility of set theoretic truths with a nominalist ontology—-and “hard cases”—defending the compatibility of the Moorean corpus with a microphysical mereological nihilist ontology. I’ve got another paper focusing on some of the technicalities of the composition case.

This project causes me much grief, since it involves many many different philosophically controversial areas: philosophy of maths, metaphysics of composition, theory of ontological commitment, philosophy of language and in particular metasemantics, and so forth. That makes it exciting to work on, but hard to present to people in a digestible way. Nevertheless, I’m going to have another go at the CSMN workshop in Olso later this month, focusing on the philosophy of language/theory of meaning aspects.

A puzzle about supervenience arguments for dualism

Suppose there’s a qualitative duplicate of the actual world (It might be a world with haecceitistic differences from the actual one, but it doesn’t have to be). Call the actual world A, and its duplicate, B.

I’m conscious in world A. Call the extension at the actual world of the things which are conscious S. There are cauliflowers in world B. Call the extension at B of the things which are cauliflowers, S*. Now consider the gruesome intension cauli-consc, which has S as its extension at world A, and S* as its extension in world B (it doesn’t matter what its extension is in other worlds: maybe it applies to all and only conscious cauliflowers).

Is there a property that things have iff they are cauli-consc? So long as “property” is intended in an ultra-lightweight sense (a sense in which any old possible-worlds intension corresponds to a property) then there shouldn’t be an trouble with this.

However. Cauli-consc is a property that doesn’t supervene on the pattern of instantiation of fundamental physical properties. After all, A and B are alike in all physical respects. But they differ as to where cauli-consc is instantiated.

Cauli-consc is a property, instantiated in the actual world, that doesn’t supervene on physical properties! Does that mean that the fact that I’m cauli-consc is a “further fact about our world, over and above the physical facts” (Chalmers 1996 p.123)? That is, do we have to say that, if there are such qualitive duplicates of the actual world, then materialism is shown to be wrong by cauli-consc?

Surely not. But the interesting question is: if some properties (like cauli-consc) can fail to supervene on the physical features of the world, what is that blocks the inference from failure of supervenience on physical features of the world, to the refutation of materialism? For what principled reason is this property “bad”, such that we can safely ignore its failure to supervene?

Here’s a way to put the general worry I’m having. Supervenience physicalism is often formulated as follows (from Lewis, I believe): any physical duplicate of the actual world is a duplicate simpliciter. But if duplication is understood (again following Lewis) as the sharing of natural properties by corresponding parts, then to get a counterexample to physicalism you’d need not only to demonstrate that a certain property fails to supervene on the physical features of the world, but also that some natural property fails to supervene: otherwise you won’t get a failure of duplication among physical duplicates. The case of cauli-consc is supposed to dramatize the gap here. Sometimes it looks like you can get properties which fail to supervene, but which don’t seem to threaten materialism.

However, when you look at the failure-to-supervene arguments for dualism, you find that people stop once they take themselves to establish that a given property fails to supervene, and not, in addition, that some natural property does so (For example, Chalmers 1996 p132 assumes that it’s enough to show that the 1-intension of “consciousness” fails to supervene, without also arguing that it’s a natural property) .

Now, I think in particular cases I can see how to run the arguments to address this issue. Add as a premise that e.g. the 1-intensions of the words of our language supervene on the total qualitative character of the world, so that we’re guaranteed that if there’s a world in which “1-consciousness” is instantiated and another where it isn’t, those can’t be qualitative duplicates. If now we find a failure of 1-consciousness to supervene on physical features of the world, we’ll be able to argue for the existence of physical duplicate worlds differing over 1-consciousness, we now know can’t be qualitative duplicates. (In effect, the suggestion is that the sense in which cauli-consc is bad is exactly that it fails to supervene on the total qualitative state of the world).

That all seems reasonable to me, but it does start to add potentially deniable premises to the argument against materialism. (For example, I’m not sure it should be uncontroversial that consciousness supervenes on the total qualitative state of the world. Is it really so clear, for example, that there are no haecceitistic elements to consciousness: that a world containing me might contain a conscious being, but a qualitiative duplicate containing some other individual doesn’t?)

So I’m not sure whether the elaboration of the Zombie argument for dualism I’ve just sketched is the way Chalmers et al want to go. I’d be interested to know how they have/would respond (references welcome, as ever).

Metametaphysics in Barcelona/some distinctions (x-post from MV)

Logos are holding a meta-metaphysics conference in Barcelona in 2008. The CFP is now out: with deadline being April 1st 2008.

I went to a Logos conference back in 2005, when I was just finishing up as a graduate student. It was a great experience: Barcelona is an amazing city to be in, Logos were fantastic hosts, and the conference was full of interesting people and talks. I also had what was possibly the best meal of my life at the conference dinner. This time, the format is preread, which I’ve really enjoyed in the past.

Here’s a quick note on the “metametaphysics” stuff. Following the Boise conference on this stuff, it seemed to me that under the label “metametaphysics” go a number of interesting projects that need a bit of disentangling. Here’s three, for starters.

First, there’s the “terminological disputes” project. Consider a first-order metaphysical question like: “under what circumstances do some things make up a further thing” (van Inwagen’s special composition question). This notes the range of seemingly rival answers to the question (all the time! some of the time! never!) and asks about whether there’s any genuine disagreement between the rival views (and if so, what sort of disagreement this is). The guiding question here is: under what conditions is a metaphysical/philosophical debate merely terminological (or whatever).

Note that the question here really doesn’t look like it has much to do with metametaphysics per se, as opposed to metaphilosophy in general. Metaphysics is just a source of case studies, in the first instance. Of course, it might turn out that metaphysics turns out to be full of terminological disputes, whereas phil science or epistemology or whatever isn’t. But equally, it might turn out that metaphysics is all genuine, whereas e.g. the Gettier salt mines are full of terminological disputes.

In contrast to this, there’s the “first order metametaphysics” (set of) project(s). This’d take key notions that are often used as starting points/framework notions for metaphysical debates, and reflect philosophically upon those. E.g.: (1) The notion of naturalness as used by Lewis. Is there such a notion? If so, are their natural quantifiers and objects and modifiers as well as natural properties? Does appeal to naturalness commit one to realism about properties, or can something like Sider’s operator-view of naturalness be made to work? (2) Ontological commitment. Is Armstrong right that (at least in some cases) to endorse a sentence “A is F” is to commit oneself to F-ness, as well as to things which are F? Might the ontological commitments of our theories be far less than Quine would have us believe (as some suggest)? (3) unrestricted existential quantifier. Is there a coherent such notion? How should its semantics be given? Is such a quantifier a Tarskian logical constant?

These debates might interest you even if you have no interesting thoughts in general about how to demarcate genuine vs. terminological disputes. Thinking about this stuff looks like it can be carried out in very much first-order terms, with rival theories of a key notion (naturalness, say) proposed and evaluated. Of course, this sort of first-order examination might be a particularly interesting kind of first-order philosophy to one engaged in the terminological disputes project.

The third sort of project we might call “anti-Quine/Lewis metametaphysics”. You might think the following. In recent years, there’s been a big trend for doing metaphysics with a Realist backdrop; in particular, the way that Armstrong and Lewis invite us to do metaphysics has been very influential among the young and impressionable. A bunch of presuppositions have become entrenched, e.g. a Quinean view of ontological commitment, the appeal to naturalness etc. So, without in the first instance attacking these presuppositions, one might want to develop an alternative framework in comparable detail which allows the formulation of alternatives. One natural starting point is to go with neoCarnapian thoughts about what the right thing to say about the SCQ is (e.g. it can be answered by stipulation). That sort of line is incompatible with the sort of view on these questions that Quine and Lewis favour. What’s the backdrop relative to which it makes sense? What are the crucial Quine-Lewis assumptions that need to be given up?

Now, this sort of project differs from the first kind of project in being (a) naturally restricted to metaphysics; and (b) not committed to any sort of demarcation of terminological disputes vs. genuine disputes. It differs from the second kind of project, since, at least in the first instance, we needn’t assume that the differences between the frameworks will reduce to different attitudes to ontological commitment, or naturalness, or whatever. On the other hand, it’s attractive to look for some underlying disagreement over the nature of ontological commitment, or naturalness, or whatever, to explain how the worldviews differ. So it may well be that a project of this kind leads to an interest in the first-order metametaphysics projects.

I’m not sure that these projects form a natural philosophical kind. What does seem to be right is that investigation of one might lead to interest in the others. There’s probably a bunch more distinctions to be drawn, and the ones I’ve pointed to probably betray my own starting points. But in my experience of this stuff, you do find people getting confused about the ambition of each other’s projects, and dismissing the whole field of metametaphysics because they identify it with some one of the projects that they themselves don’t find particularly interesting, or regard as hard to make progress with. So it’d probably be helpful if someone produced an overview of the field that teased the various possible projects apart (references anyone?).

Williamson on vague states of affairs

In connection with the survey article mentioned below, I was reading through Tim Williamson’s “Vagueness in reality”. It’s an interesting paper, though I find its conclusions very odd.

As I’ve mentioned previously, I like a way of formulating claims of metaphysical indeterminacy that’s semantically similar to supervaluationism (basically, we have ontic precisifications of reality, rather than semantic sharpenings of our meanings. It’s similar to ideas put forward by Ken Akiba and Elizabeth Barnes).

Williamson formulates the question of whether there is vagueness in reality, as the question of whether the following can ever be true:

(EX)(Ex)Vague[Xx]

Here X is a property-quantifier, and x an object quantifier. His answer is that the semantics force this to be false. The key observation is that, as he sets things up, the value assigned to a variable at a precisification and a variable assignment depends only on the variable assignment, and not at all on the precisification. So at all precisifications, the same value is assigned to the variable. That goes for both X and x; with the net result that if “Xx” is true relative to some precisification (at the given variable assignment) it’s true at all of them. That means there cannot be a variable assignment that makes Vague[Xx] true.

You might think this is cheating. Why shouldn’t variables receive different values at different precisifications (formally, it’s very easy to do)? Williamson says that, if we allow this to happen, we’d end up making things like the following come out true:

(Ex)Def[Fx&~Fx’]

It’s crucial to the supervaluationist’s explanatory programme that this come out false (it’s supposed to explain why we find the sorites premise compelling). But consider a variable assignment to x which at each precisification maps x to that object which marks the F/non-F cutoff relative to that precisification. It’s easy to see that on this “variable assignment”, Def[Fx&Fx’] comes out true, underpinning the truth of the existential.

Again, suppose that we were taking the variable assignment to X to be a precisification-relative matter. Take some object o that intuitively is perfectly precise. Now consider the assignment to X that maps X at precisification 1 to the whole domain, and X at precisification 2 to the null set. Consider “Vague[Xx]”, where o is assigned to x at every precisification, and the assignment to X is as above. The sentence will be true relative to these variable assignments, and so we have “(EX)Vague[Xx]” relative to an assignment of o to x which is supposed to “say” that o has some vague property.

Although Williamson’s discussion is about the supervaluationist, the semantic point equally applies to the (pretty much isomorphic) setting that I like, and which is supposed to capture vagueness in reality. If one makes the variable assignments non-precisification relative, then trivially the quantified indeterminacy claims go false. If one makes the variable assignments precisification-relative, then it threatens to make them trivially true.

The thought I have is that the problem here is essentially one of mixing up abundant and natural properties. At least for property-quantification, we should go for the precisification-relative notion. It will indeed turn out that “(EX)Vague[Xx]” will be trivially true for every choice of X. But that’s no more surprising that the analogous result in the modal case: quantifying over abundant properties, it turns out that every object (even things like numbers) have a great range of contingent properties: being such that grass is green for example. Likewise, in the vagueness case, everything has a great deal of vague properties: being such that the cat is alive, for example (or whatever else is your favourite example of ontic indeterminacy).

What we need to get a substantive notion, is to restrict these quantifiers to interesting properties. So for example, the way to ask whether o has some vague sparse property is to ask whether the following is true “(EX:Natural(X))Vague[Xx]”. The extrinsically specified properties invoked above won’t count.

If the question is formulated in this way, then we can’t read off from the semantics whether there will be an object and a property such that it is vague whether the former has the latter. For this will turn, not on the semantics for quantifiers alone, but upon which among the variable assignments correspond to natural properties.

Something similar goes for the case of quantification over states of affairs. (ES)Vague[S] would be either vacuously true or vacuously false depending on what semantics we assign to the variables “X”. But if our interest is in whether there are sparse states of affairs which are such that it is vague whether they obtain, what we should do is e.g. let the assignment of values to S be functions from precisifications to truth values, and then ask the question:

(ES:Natural(S))Vague[S].

Where a function from precisifications to truth values is “natural” if it corresponds to some relatively sparse state of affairs (e.g. there being a live cat on the mat). So long as there’s a principled story about which states of affairs these are (and it’s the job of metaphysics to give us that) everything works fine.

A final note. It’s illuminating to think about the exactly analogous point that could be made in the modal case. If values are assigned to variables independently of the world, we’ll be able to prove that the following is never true on any variable assignment:

Contingently[Xx].

Again, the extensions assigned to X and x are non-world dependent, so if “Xx” is true relative to one world, it’s true at them all. Is this really an argument that there is no contingent instantiation of properties? Surely not. To capture the intended sense of the question, we have to adopt something like the tactic just suggested: first allow world-relative variable assignment, and then restrict the quantifiers to the particular instances of this that are metaphysically interesting.

Ontic vagueness

I’ve been frantically working this week on a survey article on metaphysical indeterminacy and ontic vagueness. Mind bending stuff: there really is so much going on in the literature, and people are working with *very* different conceptions of the thing. Just sorting out what might be meant by the various terms “vagueness de re”, “metaphysical vagueness”, “ontic vagueness”, “metaphysical indeterminacy” was a task (I don’t think there are any stable conventions in the literature). And that’s not to mention “vague objects” and the like.

I decided in the end to push a particular methodology, if only as a stalking horse to bring out the various presuppositions that other approaches will want to deny. My view is that we should think of “indefinitely” roughly parallel to the way we do “possibly”. There are various disambiguations one can make: “possibly” might mean metaphysical possibility, epistemic possibility, or whatever; “indefinitely” might mean linguistic indeterminacy, epistemic unclarity, or something metaphysical. To figure out whether you should buy into metaphysical indeterminacy, you should (a) get yourself in a position to at least formulate coherently theories involving that operator (i.e. specify what its logic is); and (b) run the usual Quinean cost/benefit analysis on a case-by-case basis.

The view of metaphysical indeterminacy most opposed to this is one that would identify it strongly with vagueness de re, paradigmatically there being some object and some property such that it is indeterminate whether the former instantiates the latter (this is how Williamson seems to conceive of matters in a 2003 article). If we had some such syntactic criterion for metaphysical indeterminacy, perhaps we could formulate everything without postulating a plurality of disambiguations of “definitely”. However, it seems that this de re formulation would miss out some of the most paradigmatic examples of putative metaphysical vagueness, such as the de dicto formulation: It is indeterminate whether there are exactly 29 things. (The quantifiers here to be construed unrestrictedly).

I also like to press the case against assuming that all theories of metaphysical indeterminacy must be logically revisionary (endorsing some kind of multi-valued logic). I don’t think the implication works in either direction: multi-valued logics can be part of a semantic theory of indeterminacy; and some settings for thinking about metaphysical indeterminacy are fully classical.

I finish off with a brief review of the basics of Evans’ argument, and the sort of arguments (like the one from Weatherson in the previous post) that might convert metaphysical vagueness of apparently unrelated forms into metaphysically vague identity arguably susceptable to Evans argument.